

9 | P a g e

Intelligent Data Science and Analytics
Volume 1 Issue 2
Page no: 09-18

DoI: https://doi.org/10.63110/idsa.v1i02.8

Received: 14th April, 2025 | Accepted: 22nd June, 2025 | Published: 24th June, 2025

A Novel Hybrid Pseudo Random Number Generator – Switch Shift PRNG

Md Mahbubur Rahman1

1Faculty of Computer Science and Engineering, Patuakhali Science and Technology University

Patuakhali, Bangladesh

Corresponding Email: mahbub.cse@pstu.ac.bd

Md Atikqur Rahaman2
2Faculty of Computer Science and Engineering, Patuakhali Science and Technology University, Patuakhali,

Bangladesh

Email: atik.csit@pstu.ac.bd

Chinmay Bepery3
3Faculty of Computer Science and Engineering, Patuakhali Science and Technology University

Patuakhali, Bangladesh

Email: chinmay.cse@pstu.ac.bd

Hind Biswas4
4Faculty of Computer Science and Engineering, Patuakhali Science and Technology University

Patuakhali, Bangladesh

Email: ug2302016@cse.pstu.ac.bd

ABSTRACT

Pseudo Random Number Generators (PRNGs) are good at generating number sequences that only look

random but are in fact deterministic and periodic. Hybrid Pseudo Random Number Generators

(HPRNGs) address some of these limitations by using time-based seeding with a modified Linear

Congruential Generator (LCG). This approach improves upon the deterministic nature of the generator

but fails to address the problem of periodicity and dependency on a single seed. This study addresses

the deterministic nature and periodicity of PRNGs by proposing an improved HPRNG model, making

it more suitable for various applications without losing significant performance.

Keywords:

Pseudo Random Number Generator, Reseeding, Entropy, Kolmogorov-Smirnov, Chi-square, LCG, Hybrid

PRNG

1 INTRODUCTION

Many real-life applications in the modern world, such as

science, art, statistics, cryptography, gaming, gambling,

and other fields, require random numbers. This demands

a reliable system to generate satisfactory and seemingly

random data every time. This requirement led to the

development of various methods for generating random

numbers, and thus Random Number Generators (RNGs)

are employed. RNGs are systems, processes, or

algorithms that can generate a sequence of numbers or

symbols that cannot be reasonably predicted better than

by random chance. There are principal classes of

generators i.e. True Random Number Generators

(TRNGs) sometimes known as Hardware Random-

Number Generators (HRNGs), and Pseudo Random

https://researchdoors.com/index.php/IDSA
https://doi.org/10.63110/idsa.v1i02.8
mailto:mahbub.cse@pstu.ac.bd
mailto:atik.csit@pstu.ac.bd
mailto:chinmay.cse@pstu.ac.bd
mailto:ug2302016@cse.pstu.ac.bd

10 | P a g e

Intelligent Data Science and Analytics
Volume 1 Issue 2
Page no: 09-18

DoI: https://doi.org/10.63110/idsa.v1i02.8

Number Generators (PRNGs) [1]. A new class of RNG

is now being studied that can have features from both

TRNGs and PRNGs which is called the Hybrid Pseudo

Random Number Generator (HPRNG) and is the focus

of this study.

The best source for these random numbers is the TRNGs

[2] which offers real randomness. They provide numbers

that are truly random which ensures high security as

there is no periodicity, is non-deterministic, and has high

entropy. To achieve this true randomness, they extract

the dynamic entropy from random and microscopic

fluctuations in physical processes (e.g. thermal noise,

shot noise, avalanches, clock drift, jitter, atmospheric

noise, external electromagnetics, quantum phenomena,

etc.). Generating numbers based on physical phenomena

is naturally slower than algorithmic methods. Not only

that, but it also requires specialized hardware, which

may not always be available or portable. This also makes

them costly and hard to implement or integrate. Since the

randomness depends on the external source,

performance may degrade under environmental

conditions that disrupt the physical processes.

On the other hand, PRNGs e.g. LCG, Mersenne Twister

(MT19937) [3], Xorshift Generators, Linear Feedback

Shift Register (LFSR) [4], etc. are algorithmic solutions

that are way faster than their counterparts (TRNGs).

They can also generate long sequences of numbers with

predictable performance, can be implemented across

various platforms without reliance on hardware, and

have lower resource requirements because the work is

based on a predefined mathematical formula that works

on a predefined input which is called the seed. But this

means that the same seed and algorithm will always

produce an identical sequence of numbers. At the same

time, the mathematical formula leads to periodicity,

where the output eventually repeats, potentially

compromising security if the seed is discovered or the

sequence is rendered useless once it repeats if it has

lower periodicity than that is required.

Although periodicity and determinism may not be

problems in most applications and, sometimes are even

useful for reproducibility, they could pose a significant

risk for those applications that demand more security

and randomness. To address these vulnerabilities,

researchers have turned to Hybrid Pseudo Random

Number Generators （HPRNGs） [5] that uses seeding

methods such as using epoch timestamps [6] — to

introduce additional entropy into the generation process.

While this method addresses determinism, periodicity

still afflicts it, especially when the seed time is

predictable or known. Furthermore, poor or predictable

seed choice (from poor timing) can cause poor

randomness as well as lower periodicity. For examle,

Origines et al. [6] Demonstrated that while epoch-based

methods can diversify the output sequence, the

underlying periodicity of traditional PRNG algorithms

remains a challenge to be solved.

On the other hand, the predictability and the possibility

of cycle formation might make hybrid models—even

those that use time-based seeding—ineffective in high-

security settings. The necessity for more innovation in

this field is emphasized in recent research. One of the

approaches to improve the generated random number

sequence is to use Chaos Maps [7] (e.g. Logistic Map

[8], Tent Map, Chebyshev Map [9] etc.). PRNGs can be

made more unpredictable by taking advantage of chaotic

systems' complicated, non-linear behavior and sensitive

reliance on initial conditions [10]. But it also comes with

its fair share of problems. The first and most obvious is

its slow execution speed [11]. On top of that, they are

not much research on its behavior and enough empirical

data to back the randomness of Chaos Maps and thus

Counter based RNGs are more preferred [12]. Research

on parameter switching techniques [9], for instance, has

demonstrated how dynamically changing the parameters

of a chaotic system can obfuscate any deterministic

structure and disturb periodic patterns. Furthermore,

research on counter-mode deterministic generators [12]

offers a standard by which to measure randomness,

demonstrating that incorporating several entropy

sources can greatly improve security. Something like

these two techniques can be improvised and

implemented to improve the generators without using

Chaos Maps.

In this study, we propose an enhanced HPRNG

algorithm that combines multiple techniques as well as

uses a modified and better equation to generate better

random number sequence. To provide a statistically

https://researchdoors.com/index.php/IDSA
https://doi.org/10.63110/idsa.v1i02.8

11 | P a g e

Intelligent Data Science and Analytics
Volume 1 Issue 2
Page no: 09-18

DoI: https://doi.org/10.63110/idsa.v1i02.8

superior random number output, this technique aims to

address issues with both determinism and periodicity.

Our approach provides a solid solution for security-

focused applications where good randomness quality is

crucial, building on well-established theoretical

frameworks and current experimental findings in the

field.

2 METHODOLOGY

The two major problems faced by any traditional

PRNG are its deterministic nature and periodicity. Using

Epoch Timestamp [6] or System Time [5] as Entropy

Sources in HPRNGs helps solve deterministic nature up

to an extent. But if the exact time is known somehow or

leaked, the model fails at solving the deterministic

nature. At the same time, the problem with periodicity

remains. To solve this, we have introduced the Periodic

Reseeding Model as well as some other strategies [13].

The proposed algorithm—hereafter referred to as

Switch Shift PRNG (SSRNG)—proceeds by iterating a

modified linear-congruential recurrence. It takes 4

parameters:

1. Modulus m: range of outputs (0 to m). It would

be best to take where ‘e’ is the computer’s word

length and subtracting 1 from it would result in

the highest prime number. (Lehmer’s algorithm

[14]), the higher the period.

2. Count n: number of values to generate

3. Initial multiplier a

4. Weight w: Value for periodic reseeding

The algorithm of the proposed model can be

described as follows:

2.1 Choosing Seed and Initialization

The algorithm uses system time or epoch time (in

nanoseconds) as the initial seed/state. This ensures that

each time the generator runs, it uses a new seed instead

of relying on predetermined seeds.

2.2 Periodic Reseeding

This is the new model we have introduced to counteract

the inherent periodicity of digital chaotic systems and

other PRNGs. Since every PRNG has a period, if the

algorithm is reseeded after its assumed worst-case period,

the problem with periodicity is solved. To inject fresh

entropy and avoid short cycles, the generator periodically

updates every iterations, where

and is a small weight (e.g., 0.01 or 1%) that is the

assumed worst-case period in percentile while defines

the modulus range from a typical LCG algorithm. After

each , the seed is refreshed using the current

system time. This systematic reseeding injects fresh

entropy, effectively breaking any emerging cycles and

ensuring the randomness remains robust over prolonged

sequences.

2.3 Iteration:

For each output, the generator iterates over the

formula for i from 1 to ‘n’, each time updating the state

with shift, multiplication, and modular reduction:

a. Check for Reseeding: If the (number of

iterations till n) reaches a repeating value of the

predetermined worst-case period (the maximum

safe interval; , Refresh the

state by drawing a fresh seed from the current

time (e.g.,). This periodic

reseeding injects new entropy and breaks any

long-term cycle in the state.

b. Bit-shift mixing: Compute a left shift by 5 bits

of the state multiplied by : let .

This operation effectively mixes the bit positions

by moving the high-order bits to a larger range.

Then that new bit-shifted state is multiplied with

the multiplicative term a.

c. Modulus: Then the state is multiplied by and

kept under the given range by modulus operation

().

This iteration runs till the reaches i.e. it has

generated random numbers.

2.4 Formula

Using a shift by 5 and a multiplier mixes the bits of x

(much like XOR shift generators do with bitwise shifts

and XORs) while the modulo operation confines the

result to the range [0, m) as in a standard LCG:

https://researchdoors.com/index.php/IDSA
https://doi.org/10.63110/idsa.v1i02.8

12 | P a g e

Intelligent Data Science and Analytics
Volume 1 Issue 2
Page no: 09-18

DoI: https://doi.org/10.63110/idsa.v1i02.8

The numbers generated in each iteration are then

appended to the output sequence and returned at the end.

3 FLOW CHART AND

IMPLEMENTATION

The algorithm has 2 main parts i.e., Entropy Reseeding

Model, and the generator formula. We have chosen these

different unrelated models because:

“An acceptable random generator must combine at

least two (ideally, unrelated) methods. The methods

combined should evolve independently and share no

state. The combination should be by simple operations

that do not produce results less random than their

operands.” [15]

3.1 Entropy Reseeding Model

The first proposed model is the Entropy Reseeding

Model (Figure 1). It works by taking a worst-case period,

 and reseeding with new entropy seed after every

 times generations.

3.2 Main Generator

In the main generator a modified LCG as shown in

Error! Reference source not found. is used.

3.3 Code Implementation

The implementation of the algorithm is done Python

v3.13.3.

4 STATISTICAL TESTS

An extensive statistical test was performed to ensure the

quality and consistency of the pseudo-random numbers

produced by our proposed SSRNG. The purpose of these

tests is to determine whether the output sequences follow

the expected uniform distribution, which is a crucial

prerequisite for simulations and applications involving

cryptography.

We implemented a rigorous testing methodology in our

experimental setup that involved 1000 threads, each of

which ran 10 tests for each algorithm with various

parameter configurations (i.e., different values of 𝑚 and

𝑎). As a result, separate tests were

produced. We created thorough statistical reports,

rejection heatmaps, random number distribution

profiles, and rejection rates for the tests as well as

execution time taken by each algorithm.

Figure 1 Entropy Reseeding Model

Figure 2 Switch Shift PRNG

https://researchdoors.com/index.php/IDSA
https://doi.org/10.63110/idsa.v1i02.8

13 | P a g e

Intelligent Data Science and Analytics
Volume 1 Issue 2
Page no: 09-18

DoI: https://doi.org/10.63110/idsa.v1i02.8

4.1 Test Methodology

To rigorously evaluate the randomness of our proposed

Switch, Shift Pseudo-Random Number Generator

(SSRNG), we employed two primary statistical tests: the

Chi-Square Test [16] and the Kolmogorov–Smirnov

(KS) Test [17]. These tests assess different aspects of the

generated sequences to ensure they meet the criteria for

uniformity and randomness.

4.2 Chi-square Test:

This test assesses how well the observed frequency

distribution of numbers aligns with the expected uniform

distribution. The Chi-square statistic is computed as:

 where and are the observed and expected

frequencies for the iii-th bin, respectively. A p-value is

derived from the statistic, and if the p-value is below the

significance level (), the test rejects the

hypothesis that the distribution is uniform.

[N.B. It's important to note that the Chi-Square Test

requires a sufficiently large sample size to ensure that

the expected frequency in each bin is adequate, typically

at least 5, to validate the test's assumptions.]

4.3 Kolmogorov–Smirnov (KS) Test.:

This non-parametric test compares the empirical

distribution of the generated numbers to a theoretical

uniform distribution. It computes the maximum

deviation (D) between the two distributions and

evaluates the null hypothesis that the numbers are

uniformly distributed.

The KS Test is advantageous because it does not require

binning of data and is effective for continuous

distributions. However, it is more sensitive near the

center of the distribution than at the tails.

4.4 Implementation and Test Procedures

The testing framework was implemented in Python v

3.13.3 using the SciPy (v1.14.1) library for statistical

analysis. The data has been stored in SQLite database.

Key steps in the process include:

• Normalization: The raw output from the PRNG

is normalized to the interval to facilitate

comparison with the uniform distribution.

• Test Execution: For each algorithm, a sequence

of random numbers is generated and

normalized. The Chi-square and KS tests are then

applied to this sequence. The entire testing routine

is executed repeatedly (100 iterations per

algorithm) to compute average test statistics and

execution times.

• Data Aggregation: Test results—including the

Chi-square statistic, KS statistic, corresponding p-

values, and execution times—are stored.

Aggregation scripts then compile rejection counts

and performance metrics across multiple threads.

• Visualization: Results are visualized using

Python libraries such as Pandas and Seaborn,

providing a clear comparative overview of the

rejection rates and execution times for each

algorithm.

• Algorithms Tested: A total of five algorithms

were tested for comparison. Amongst them,

SSRNG, our proposed model has been compared

with the base model HPRNG (named ‘hybrid’ in

the tests) and other popular PRNG algorithms i.e.

MT19937, PCG, WELL512

Figure 3 Rejection Rates on different algorithm. Blue is the Chi2

rejection rate and Yellow is the KS Test rejection rate. The rate of

rejection is on the y-axis and the algorithms on the x-axis. The

algorithms from left to right respectively are: Mersenne Twister,

PCG, Well512a, HPRNG and proposed SSRNG

https://researchdoors.com/index.php/IDSA
https://doi.org/10.63110/idsa.v1i02.8

14 | P a g e

Intelligent Data Science and Analytics
Volume 1 Issue 2
Page no: 09-18

DoI: https://doi.org/10.63110/idsa.v1i02.8

5 RESULTS

We conducted the tests on our proposed CHPRNG and

base model algorithm, HPRNG. We compiled the result

based on 4 parameters, i.e., Rejection Rate, Rejection

Heat map, Random Number Distribution, and Test

Statistics.

[N.B. in the result figures, HPRNG has been used as

‘hybrid’ and SSRNG as ‘s_shift’]

5.1 Rejection Rate

The rejection rate measures the proportion of generated

sequences that fail the uniformity tests at a significance

level of . The results of the Chi-squared and

Kolmogorov–Smirnov (KS) tests for both the proposed

SSRNG and the baseline HPRNG, some other

algorithms (Mersenne Twister, PCG, Well512a) are

summarized in Error! Reference source not found..

This means the lower the rejection rate, the less the

model fails the uniformity test across different values of

the parameters and the better the model is. The rate has

been calculated based on, how many tests the model

rejects the null hypothesis among all the tests.

The rejection rates for the Mersenne Twister, PCG, and

Well512a turned out to be roughly around 30%. For the

HPRNG algorithm, the rejection rates were 17.43% and

17.02% for the Chi-squared and KS tests, respectively.

In contrast, the proposed SSRNG achieved lower

rejection rates of 5.74% (Chi-squared) and 5.28% (KS).

This indicates an improvement in statistical uniformity

and randomness quality in the proposed algorithm

compared to the baseline:

The results from Table 1 suggest that CHPRNG exhibits

enhanced randomness properties, as evidenced by lower

rejection rates across both statistical tests i.e. Approx.

68.67% and 68.98% improvement in Chi-square and KS

Tests respectively compared to the base model of

HPRNG and 82% (on average) better than the other

models.

Algorithm Chi2 KS Total

Tests

MT19937 30.08% 32.14% 10000

PCG 30.13% 30.24% 10000

WELL512 28.92% 31.12% 10000

HPRNG (base) 17.43% 17.02% 10000

SSRNG (proposed) 05.74% 05.28% 10000

Table 1 Rejection Rate

Figure 4 Rejection Heatmap 1 across different values of m. For

each algorithm, rejection placed for KS and Chi-square side by

side.

Figure 5 Rejection Heatmap 2

https://researchdoors.com/index.php/IDSA
https://doi.org/10.63110/idsa.v1i02.8

15 | P a g e

Intelligent Data Science and Analytics
Volume 1 Issue 2
Page no: 09-18

DoI: https://doi.org/10.63110/idsa.v1i02.8

5.2 Rejection Heat map

To further illustrate how rejection rates vary with

different sample sizes, we present the 2 rejection

heatmaps in Error! Reference source not found. and

Error! Reference source not found.. Each row

corresponds to a specific value (ranging from 102 to

106), while each column represents a particular

combination of algorithms and statistical tests (Chi-

square and KS). A cell, shaded in red (=1), indicates that

the corresponding test rejects the null hypothesis,

whereas a blue cell (=0) signifies no rejection.

This heat map reveals some interesting characteristics of

the models. It is seen that the base model HPRNG,

rejects the null hypothesis at the lower values of m.

Sometimes it fails at higher values too but not all of

them. On the other hand, the other models reject at a

higher value of m but perform well at lower values.

Whereas our proposed model remains uniform for

almost every value of m. So, it is more suitable for

generating random number sequences over any range of

numbers as the value of m is the range of the generated

random numbers.

5.3 Random Number Distribution

The Figure 2 compares the distributions of generated

random values for Mersenne Twister (mt19937), PCG,

Well512a, HPRNG, and the proposed SSRNG algorithm

(from left to right) across a range of sample sizes. In each

subplot, the horizontal axis shows the increasing sample

sizes of m () and the vertical axis shows the

range of generated values, normalized to the interval

: the central line denotes the median of the draws,

the box boundaries mark the first and third quartiles

(interquartile range, IQR), and the whiskers extend to the

minimum and maximum observed values.

For the Mersenne Twister (mt19937), PCG, and

Well512a, the medians remain tightly clustered around

0.5, and the IQR (the height of each box) remains nearly

constant for the smaller values of m. However, the

distribution does not remain uniform at higher values of

m and shows similar drop as the whiskers do not fully

span the full interval. As for the HPRNG, it shows a

noticeable skew at lower value of m: the median is

slightly below 0.5 (roughly around 0.3). For ,

the median drops to 0.2 with a wider IQR box with

whiskers not extending to 1. But as the value of m

increased the median shifted towards 0.5 with a more

uniform distribution.

On the other hand, the SSRNG shows way better

distribution. Even at lower values of m, SSRNG’s

distribution is very close to uniform: its median lies

almost exactly at 0.5, with an IQR only marginally wider

than at higher samples. There is essentially no visible

change throughout every value of m. The spans and

notch widths are almost identical to the large- behavior

of the other generators, showing that even small draws

from SSRNG result in an ideal uniform distribution.

5.4 Tests Statistics

The Error! Reference source not found. and

Error! Reference source not found. respectively

shows the Kolmogorov–Smirnov (KS) and Chi-squared

test statistics for the Mersenne Twister (colored blue),

PCG (colored orange), Well512a (colored green), base

HPRNG (colored blue) and the proposed SSRNG

algorithm (colored purple) across various sample sizes

(m). A smaller statistic in both tests indicates a closer fit

to the theoretical uniform distribution.

For the KS statistics, at lower values of m, the base

algorithm exhibits larger values, suggesting less

uniformity that gets more uniform as the value of the m

increases. As for the other models, it increases sharply

for higher values of m, but it was uniform for lower

values. The proposed model on the other hand showed

little deviation throughout.

Figure 2 Generated Number Distribution for base model HPRNG

https://researchdoors.com/index.php/IDSA
https://doi.org/10.63110/idsa.v1i02.8

16 | P a g e

Intelligent Data Science and Analytics
Volume 1 Issue 2
Page no: 09-18

DoI: https://doi.org/10.63110/idsa.v1i02.8

For lower values of m, the base algorithm exhibits

comparatively higher Chi-squared statistics, suggesting

less uniformity. As m increases, both (HPRNG and

SSRNG) algorithms’ test statistics decrease, reflecting

an overall improvement in distribution uniformity. For

the other models, they showed similar behavior to KS

stats. Nevertheless, proposed algorithm consistently

yields lower or comparable test statistics compared to

HPRNG and other models, indicating more robust

performance across the examined sample sizes.

5.5 Execution Time

For the proposed model as well as other models, we have

tested the execution time by running the generators

multiple times. Here, in Figure 3, we can see how much

time each model took to generate random number

sequence over different values of m. The Well512a and

the Mersenne Twister took the most amount of time.

PCG took around half the amount. Whereas the Base

model HPRNG and proposed SSRNG took the least

amount of time.

6 OBSERVATION AND DISCUSSION

The proposed algorithm implements a modified

multiplicative LCG with bit shift and entropy reseeding.

This showed great improvement than well-known RNGs

as well as the base model HPRNG in our rigorous testing.

Through every parameter, the SSRNG showed great

results. It has the lowest rejection rate throughout

different ranges of m and a. When observed in the

heatmap, we can see that the well-known algorithm

performed uniformly great at lower values of m but

constantly failed at higher ranges. The opposite happened

with the HPRNG as it failed at lower values of m. We can

see this more clearly when looking at the test statistics

and the distribution boxplots. At a medium range of m,

all the models were similarly uniform and performed well.

As for our proposed model, it was not only uniform

Figure 8 Chi-squared Tests Statistics

Figure 3 Execution Time: Mersenne Twister (colored

blue), PCG (colored orange), Well512a (colored green),
base HPRNG (colored blue) and the proposed SSRNG

algorithm (colored purple)

Figure 7 KS Tests Statistics

https://researchdoors.com/index.php/IDSA
https://doi.org/10.63110/idsa.v1i02.8

17 | P a g e

Intelligent Data Science and Analytics
Volume 1 Issue 2
Page no: 09-18

DoI: https://doi.org/10.63110/idsa.v1i02.8

throughout every value of m and showed a huge

improvement in rejection rate. Along with better

performance, it was also equally fast and computationally

cheap.

7 CONCLUSION

In this work, we have introduced a novel and

enhanced Pseudo Random Number Generator – The

Switch Shift Pseudo Random Number Generator or

SSRNG – expanding or improving over the Hybrid

Pseudo Random Number Generator. Our algorithm

directly addresses two major limitations of the

conventional PRNGs i.e. their deterministic nature and

finite‐period behavior. By using an epoch‐based seeding

mechanism at initialization and a systematic “periodic

reseeding” model, SSRNG injects fresh entropy into the

generator at carefully chosen intervals i.e. expected

worst-case period, effectively “breaking” any potential

long‐term recurrence and thus solves the issue of

periodicity. In every iteration, a lightweight bit‐shift and

multiplicative mixing step prepares a new number

reduced to a value ranging between 0 to m [0, m) by

modular operation. This combination of shift-

multiplication-modulus along with periodic switching of

seed, not only preserves shows high computational

efficiency but also raises the effective period such that it

exceeds the requirements of the most demanding

applications.

Our extensive empirical tests —spanning

distributional boxplots, Pearson chi‐square tests,

Kolmogorov–Smirnov metrics, and end‐to‐end

execution‐time measurements—show that SSRNG

surpasses the performance of the classical generators

(Mersenne Twister, PCG, and Well512a) as well as the

earlier base model Hybrid PRNG (HPRNG). Our model

does not fail at lower ranges of m like the HPRNG as well

as at higher ranges of m like the classical generators. So,

the uniformity performance is way better than that of

previous models. On top of that, it is not deterministic, as

even if we feed a known seed, due to it automatically

switching the seed during execution based on the current

time and not on the initial state/seed, it will produce

different values every time. This gets rid of the

deterministic nature of the PRNGs and behaves more like

TRNGs. Along with solving the deterministic nature, the

periodic reseeding keeps adding entropy regularly, this

disrupts the periodicity of the sequence. And the result

can be seen from the test data.

Beyond statistical quality, SSRNG’s run‐time

performance is outstanding. Alongside producing better,

non-deterministic, and non-periodic random number

sequences, it is still computationally cheap. From the

execution time graph, we can see that it takes a little more

time than that of the HPRNG yet solves the two most

fundamental issues of classical PRNGs.

In summary, SSRNG shows a significant

performance boost and advancement as a high‐security,

high‐performance pseudorandom generator. It is truly a

Hybrid Random Number Generator as it has properties of

Both TRNGs (not being deterministic, reproducible, or

periodic) and PRNGs (being fast, not requiring hardware,

and computationally cheap). Its ability to produce

statistically uniform random number sequences

combined with its great performance throughout a range

of different parameters, makes it highly suitable for

applications ranging from cryptographic key generation

to large‐scale Monte Carlo simulations. At the same time,

the simple design of the algorithm—merely a few shifts,

multiplications, and modular arithmetic steps along with

occasional time‐based reseeding— makes it highly

portable and easy to implement and integrate across

various platforms and environments. Future research

may explore further optimizations, and dynamic

parameters, investigating adaptive reseeding schedules,

or formally analyzing the provable lower bounds on

SSRNG’s cycle length under worst‐case timestamp

distributions. Nevertheless, even in its present form,

SSRNG, not only works great with high performance

with fast execution but also successfully addresses the

two most fundamental characteristics of classical PRNGs

i.e. deterministic nature and periodicity without

sacrificing simplicity and execution time.

8 REFERENCES

[1] F. Koeune, "Pseudorandom Number Generator," in

Encyclopedia of Cryptography and Security, H. van

https://researchdoors.com/index.php/IDSA
https://doi.org/10.63110/idsa.v1i02.8

18 | P a g e

Intelligent Data Science and Analytics
Volume 1 Issue 2
Page no: 09-18

DoI: https://doi.org/10.63110/idsa.v1i02.8

Tilborg and S. Jajodia, Eds., Boston, MA, Springer,

Boston, MA, 2011, pp. 995-996.

[2] M. Stipčević and Ç. K. Koç, "True Random Number

Generators," Open Problems in Mathematics and

Computational Science, p. 75–315, 2014.

[3] M. Matsumoto and T. Nishimura, "Mersenne Twister:

A 623-dimensionally equidistributed uniform

pseudorandom number generator.," ACM Transactions

on Modeling and Computer Simulation (TOMACS).,

vol. 8, no. 1, pp. 3-30, 1998.

[4] L. Oumouss, A. Younes, A. Ahmed and A. Rguibi,

"Cryptographically robust pseudo-random binary

sequence generator based on the integration of LFSRs

and CAs," in 2024 International Conference on

Circuit, Systems and Communication (ICCSC), Fes,

2024.

[5] M. M. Rahman and T. Ahmed, "The Hybrid Pseudo

Random Number Generator," International Journal of

Hybrid Information Technology, vol. 9, no. 7, pp. 299-

312, 2016.

[6] D. V. Origines, A. M. Sison and R. P. Medina, "A

Novel Pseudo-Random Number Generator Algorithm

based on Entropy Source Epoch Timestamp," in 2019

International Conference on Information and

Communications Technology (ICOIACT), Yogyakarta,

2019.

[7] J. Amigó, "Chaos-Based Cryptography.," in Intelligent

Computing Based on Chaos, L. Kocarev, Z. Galias and

S. Lian, Eds., Berlin, Springer Berlin Heidelberg,

2009, pp. 291-313.

[8] T. H. Teo, M. Xiang, M. Elsharkawy, H. R. Leao, M.

J. Andrew Calderon, J. L. Lee, S. A. Bin Rosli, H. Y.

See and E. Y. Lim, "Design and Implementation of a

Logistic Map-Based Pseudo-Random Number

Generator on FPGA," in 2024 IEEE 17th International

Symposium on Embedded Multicore/Many-core

Systems-on-Chip (MCSoC), Kuala Lumpur, 2024.

[9] İ. Öztürk and R. Kılıç, "A new pseudo random number

generator based on Chebyshev maps and parameter

switching," in 2018 6th International Conference on

Control Engineering & Information Technology

(CEIT), Istanbul, 2018.

[10] W. F. H. Al-shameri and M. A. Mahiub, "Some

Dynamical Properties of the Family of Tent Maps,"

International Journal of Mathematical Analysis, vol. 7,

no. 29, pp. 1433-1449, 2013.

[11] M. S. Kaya and K. İnce, "Benchmarking Various 1D

Chaotic Maps For Lightweight Pseudo-Random

Number Generation," in 2024 8th International

Artificial Intelligence and Data Processing Symposium

(IDAP), Malatya, 2024.

[12] R. I. Caran, "Comparative Analysis Between Counter

Mode Deterministic Random Bit Generators and

Chaos-Based Pseudo-Random Number Generators," in

2024 International Conference on Development and

Application Systems (DAS), Suceava, 2024.

[13] I. V. Chugunkov, V. A. Gulyaev, E. A. Baranova and

V. I. Chugunkov, "Method for Improving the

Statistical Properties of Pseudo-random Number

Generators," in 2019 IEEE Conference of Russian

Young Researchers in Electrical and Electronic

Engineering (EIConRus), Saint Petersburg and

Moscow, 2019.

[14] D. H. Lehmer, "Mathematical Methods in Large-Scale

Computing Units," in Proceedings of the Second

Symposium on Large Scale Digital Calculating

Machinery, 1951.

[15] W. T. Vetterling, Numerical Recipes - The Art of

Scientific Computing - 3rd Edition, Cambridge

University Press, 1986.

[16] "Chi-Square Test," in The Concise Encyclopedia of

Statistics, New York, Springer New York, 2008, pp.

77-79.

[17] "Kolmogorov–Smirnov Test," in The Concise

Encyclopedia of Statistics, New York, Springer New

York, 2008, pp. 283-287.

https://researchdoors.com/index.php/IDSA
https://doi.org/10.63110/idsa.v1i02.8

