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ABSTRACT 

Pseudo Random Number Generators (PRNGs) are good at generating number sequences that only look 

random but are in fact deterministic and periodic. Hybrid Pseudo Random Number Generators 

(HPRNGs) address some of these limitations by using time-based seeding with a modified Linear 

Congruential Generator (LCG). This approach improves upon the deterministic nature of the generator 

but fails to address the problem of periodicity and dependency on a single seed. This study addresses 

the deterministic nature and periodicity of PRNGs by proposing an improved HPRNG model, making 

it more suitable for various applications without losing significant performance.   

Keywords: 
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1 INTRODUCTION 

Many real-life applications in the modern world, such as 

science, art, statistics, cryptography, gaming, gambling, 

and other fields, require random numbers. This demands 

a reliable system to generate satisfactory and seemingly 

random data every time. This requirement led to the 

development of various methods for generating random 

numbers, and thus Random Number Generators (RNGs) 

are employed. RNGs are systems, processes, or 

algorithms that can generate a sequence of numbers or 

symbols that cannot be reasonably predicted better than 

by random chance. There are principal classes of 

generators i.e. True Random Number Generators 

(TRNGs) sometimes known as Hardware Random-

Number Generators (HRNGs), and Pseudo Random 
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Number Generators (PRNGs) [1]. A new class of RNG 

is now being studied that can have features from both 

TRNGs and PRNGs which is called the Hybrid Pseudo 

Random Number Generator (HPRNG) and is the focus 

of this study. 

The best source for these random numbers is the TRNGs 

[2] which offers real randomness. They provide numbers 

that are truly random which ensures high security as 

there is no periodicity, is non-deterministic, and has high 

entropy. To achieve this true randomness, they extract 

the dynamic entropy from random and microscopic 

fluctuations in physical processes (e.g. thermal noise, 

shot noise, avalanches, clock drift, jitter, atmospheric 

noise, external electromagnetics, quantum phenomena, 

etc.). Generating numbers based on physical phenomena 

is naturally slower than algorithmic methods. Not only 

that, but it also requires specialized hardware, which 

may not always be available or portable. This also makes 

them costly and hard to implement or integrate. Since the 

randomness depends on the external source, 

performance may degrade under environmental 

conditions that disrupt the physical processes. 

On the other hand, PRNGs e.g. LCG, Mersenne Twister 

(MT19937)  [3], Xorshift Generators, Linear Feedback 

Shift Register (LFSR)  [4], etc. are algorithmic solutions 

that are way faster than their counterparts (TRNGs). 

They can also generate long sequences of numbers with 

predictable performance, can be implemented across 

various platforms without reliance on hardware, and 

have lower resource requirements because the work is 

based on a predefined mathematical formula that works 

on a predefined input which is called the seed. But this 

means that the same seed and algorithm will always 

produce an identical sequence of numbers. At the same 

time, the mathematical formula leads to periodicity, 

where the output eventually repeats, potentially 

compromising security if the seed is discovered or the 

sequence is rendered useless once it repeats if it has 

lower periodicity than that is required. 

Although periodicity and determinism may not be 

problems in most applications and, sometimes are even 

useful for reproducibility, they could pose a significant 

risk for those applications that demand more security 

and randomness. To address these vulnerabilities, 

researchers have turned to Hybrid Pseudo Random 

Number Generators （HPRNGs） [5] that uses seeding 

methods such as using epoch timestamps [6] — to 

introduce additional entropy into the generation process. 

While this method addresses determinism, periodicity 

still afflicts it, especially when the seed time is 

predictable or known. Furthermore, poor or predictable 

seed choice (from poor timing) can cause poor 

randomness as well as lower periodicity. For examle, 

Origines et al. [6] Demonstrated that while epoch-based 

methods can diversify the output sequence, the 

underlying periodicity of traditional PRNG algorithms 

remains a challenge to be solved.  

On the other hand, the predictability and the possibility 

of cycle formation might make hybrid models—even 

those that use time-based seeding—ineffective in high-

security settings. The necessity for more innovation in 

this field is emphasized in recent research. One of the 

approaches to improve the generated random number 

sequence is to use Chaos Maps [7] (e.g. Logistic Map 

[8], Tent Map, Chebyshev Map [9] etc.). PRNGs can be 

made more unpredictable by taking advantage of chaotic 

systems' complicated, non-linear behavior and sensitive 

reliance on initial conditions [10]. But it also comes with 

its fair share of problems. The first and most obvious is 

its slow execution speed [11]. On top of that, they are 

not much research on its behavior and enough empirical 

data to back the randomness of Chaos Maps and thus 

Counter based RNGs are more preferred [12]. Research 

on parameter switching techniques [9], for instance, has 

demonstrated how dynamically changing the parameters 

of a chaotic system can obfuscate any deterministic 

structure and disturb periodic patterns. Furthermore, 

research on counter-mode deterministic generators  [12] 

offers a standard by which to measure randomness, 

demonstrating that incorporating several entropy 

sources can greatly improve security. Something like 

these two techniques can be improvised and 

implemented to improve the generators without using 

Chaos Maps. 

In this study, we propose an enhanced HPRNG 

algorithm that combines multiple techniques as well as 

uses a modified and better equation to generate better 

random number sequence. To provide a statistically 
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superior random number output, this technique aims to 

address issues with both determinism and periodicity. 

Our approach provides a solid solution for security-

focused applications where good randomness quality is 

crucial, building on well-established theoretical 

frameworks and current experimental findings in the 

field. 

2 METHODOLOGY 

The two major problems faced by any traditional 

PRNG are its deterministic nature and periodicity. Using 

Epoch Timestamp [6] or System Time [5] as Entropy 

Sources in HPRNGs helps solve deterministic nature up 

to an extent. But if the exact time is known somehow or 

leaked, the model fails at solving the deterministic 

nature. At the same time, the problem with periodicity 

remains. To solve this, we have introduced the Periodic 

Reseeding Model as well as some other strategies [13]. 

The proposed algorithm—hereafter referred to as 

Switch Shift PRNG (SSRNG)—proceeds by iterating a 

modified linear-congruential recurrence. It takes 4 

parameters: 

1. Modulus m: range of outputs (0 to m). It would 

be best to take where ‘e’ is the computer’s word 

length and subtracting 1 from it would result in 

the highest prime number. (Lehmer’s algorithm 

[14]), the higher the period. 

2. Count n: number of values to generate 

3. Initial multiplier a 

4. Weight w: Value for periodic reseeding 

The algorithm of the proposed model can be 

described as follows: 

2.1 Choosing Seed and Initialization 

The algorithm uses system time or epoch time (in 

nanoseconds) as the initial seed/state. This ensures that 

each time the generator runs, it uses a new seed instead 

of relying on predetermined seeds.  

2.2 Periodic Reseeding 

This is the new model we have introduced to counteract 

the inherent periodicity of digital chaotic systems and 

other PRNGs. Since every PRNG has a period, if the 

algorithm is reseeded after its assumed worst-case period, 

the problem with periodicity is solved. To inject fresh 

entropy and avoid short cycles, the generator periodically 

updates  every  iterations, where 

 

and  is a small weight (e.g., 0.01 or 1%) that is the 

assumed worst-case period in percentile while  defines 

the modulus range from a typical LCG algorithm. After 

each , the seed  is refreshed using the current 

system time. This systematic reseeding injects fresh 

entropy, effectively breaking any emerging cycles and 

ensuring the randomness remains robust over prolonged 

sequences. 

2.3 Iteration: 

For each output, the generator iterates over the 

formula for i from 1 to ‘n’, each time updating the state 

with shift, multiplication, and modular reduction: 

a. Check for Reseeding: If the  (number of 

iterations till n) reaches a repeating value of the 

predetermined worst-case period (the maximum 

safe interval; , Refresh the 

state by drawing a fresh seed from the current 

time (e.g., ). This periodic 

reseeding injects new entropy and breaks any 

long-term cycle in the state. 

b. Bit-shift mixing: Compute a left shift by 5 bits 

of the state multiplied by : let . 

This operation effectively mixes the bit positions 

by moving the high-order bits to a larger range. 

Then that new bit-shifted state is multiplied with 

the multiplicative term a. 

c. Modulus: Then the state is multiplied by  and 

kept under the given range by modulus operation 

( ). 

This iteration runs till the  reaches  i.e. it has 

generated  random numbers.  

2.4 Formula 

Using a shift by 5 and a multiplier mixes the bits of x 

(much like XOR shift generators do with bitwise shifts 

and XORs) while the modulo operation confines the 

result to the range [0, m) as in a standard LCG: 

https://researchdoors.com/index.php/IDSA
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The numbers generated in each iteration are then 

appended to the output sequence and returned at the end. 

3 FLOW CHART AND 

IMPLEMENTATION 

The algorithm has 2 main parts i.e., Entropy Reseeding 

Model, and the generator formula. We have chosen these 

different unrelated models because: 

“An acceptable random generator must combine at 

least two (ideally, unrelated) methods. The methods 

combined should evolve independently and share no 

state. The combination should be by simple operations 

that do not produce results less random than their 

operands.” [15] 

3.1 Entropy Reseeding Model 

The first proposed model is the Entropy Reseeding 

Model (Figure 1). It works by taking a worst-case period, 

 and reseeding with new entropy seed after every 

 times generations. 

3.2 Main Generator 

In the main generator a modified LCG as shown in 

Error! Reference source not found. is used. 

3.3 Code Implementation 

The implementation of the algorithm is done Python 

v3.13.3. 

4 STATISTICAL TESTS 

An extensive statistical test was performed to ensure the 

quality and consistency of the pseudo-random numbers 

produced by our proposed SSRNG. The purpose of these 

tests is to determine whether the output sequences follow 

the expected uniform distribution, which is a crucial 

prerequisite for simulations and applications involving 

cryptography. 

We implemented a rigorous testing methodology in our 

experimental setup that involved 1000 threads, each of 

which ran 10 tests for each algorithm with various 

parameter configurations (i.e., different values of 𝑚 and 

𝑎). As a result,   separate tests were 

produced. We created thorough statistical reports, 

rejection heatmaps, random number distribution 

profiles, and rejection rates for the tests as well as 

execution time taken by each algorithm. 

 

Figure 1 Entropy Reseeding Model 

 

 

Figure 2 Switch Shift PRNG 
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4.1 Test Methodology 

To rigorously evaluate the randomness of our proposed 

Switch, Shift Pseudo-Random Number Generator 

(SSRNG), we employed two primary statistical tests: the 

Chi-Square Test [16] and the Kolmogorov–Smirnov 

(KS) Test [17]. These tests assess different aspects of the 

generated sequences to ensure they meet the criteria for 

uniformity and randomness. 

4.2 Chi-square Test: 

This test assesses how well the observed frequency 

distribution of numbers aligns with the expected uniform 

distribution. The Chi-square statistic is computed as: 

 

 where  and  are the observed and expected 

frequencies for the iii-th bin, respectively. A p-value is 

derived from the statistic, and if the p-value is below the 

significance level ( ), the test rejects the 

hypothesis that the distribution is uniform. 

[N.B. It's important to note that the Chi-Square Test 

requires a sufficiently large sample size to ensure that 

the expected frequency in each bin is adequate, typically 

at least 5, to validate the test's assumptions.] 

4.3 Kolmogorov–Smirnov (KS) Test.: 

This non-parametric test compares the empirical 

distribution of the generated numbers to a theoretical 

uniform distribution. It computes the maximum 

deviation (D) between the two distributions and 

evaluates the null hypothesis  that the numbers are 

uniformly distributed. 

The KS Test is advantageous because it does not require 

binning of data and is effective for continuous 

distributions. However, it is more sensitive near the 

center of the distribution than at the tails.  

4.4 Implementation and Test Procedures 

The testing framework was implemented in Python v 

3.13.3 using the SciPy (v1.14.1) library for statistical 

analysis. The data has been stored in SQLite database. 

Key steps in the process include: 

• Normalization: The raw output from the PRNG 

is normalized to the  interval to facilitate 

comparison with the uniform distribution. 

• Test Execution: For each algorithm, a sequence 

of   random numbers is generated and 

normalized. The Chi-square and KS tests are then 

applied to this sequence. The entire testing routine 

is executed repeatedly (100 iterations per 

algorithm) to compute average test statistics and 

execution times.  

• Data Aggregation: Test results—including the 

Chi-square statistic, KS statistic, corresponding p-

values, and execution times—are stored. 

Aggregation scripts then compile rejection counts 

and performance metrics across multiple threads. 

• Visualization: Results are visualized using 

Python libraries such as Pandas and Seaborn, 

providing a clear comparative overview of the 

rejection rates and execution times for each 

algorithm. 

• Algorithms Tested: A total of five algorithms 

were tested for comparison. Amongst them, 

SSRNG, our proposed model has been compared 

with the base model HPRNG (named ‘hybrid’ in 

the tests) and other popular PRNG algorithms i.e. 

MT19937, PCG, WELL512 

Figure 3 Rejection Rates on different algorithm. Blue is the Chi2 

rejection rate and Yellow is the KS Test rejection rate. The rate of 

rejection is on the y-axis and the algorithms on the x-axis. The 

algorithms from left to right respectively are: Mersenne Twister, 

PCG, Well512a, HPRNG and proposed SSRNG 
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5 RESULTS 

We conducted the tests on our proposed CHPRNG and 

base model algorithm, HPRNG. We compiled the result 

based on 4 parameters, i.e., Rejection Rate, Rejection 

Heat map, Random Number Distribution, and Test 

Statistics. 

[N.B. in the result figures, HPRNG has been used as 

‘hybrid’ and SSRNG as ‘s_shift’] 

5.1 Rejection Rate 

The rejection rate measures the proportion of generated 

sequences that fail the uniformity tests at a significance 

level of . The results of the Chi-squared and 

Kolmogorov–Smirnov (KS) tests for both the proposed 

SSRNG and the baseline HPRNG, some other 

algorithms (Mersenne Twister, PCG, Well512a) are 

summarized in Error! Reference source not found.. 

This means the lower the rejection rate, the less the 

model fails the uniformity test across different values of 

the parameters and the better the model is. The rate has 

been calculated based on, how many tests the model 

rejects the null hypothesis among all the tests. 

The rejection rates for the Mersenne Twister, PCG, and 

Well512a turned out to be roughly around 30%. For the 

HPRNG algorithm, the rejection rates were 17.43% and 

17.02% for the Chi-squared and KS tests, respectively. 

In contrast, the proposed SSRNG achieved lower 

rejection rates of 5.74% (Chi-squared) and 5.28% (KS). 

This indicates an improvement in statistical uniformity 

and randomness quality in the proposed algorithm 

compared to the baseline: 

 

The results from Table 1 suggest that CHPRNG exhibits 

enhanced randomness properties, as evidenced by lower 

rejection rates across both statistical tests i.e. Approx. 

68.67% and 68.98% improvement in Chi-square and KS 

Tests respectively compared to the base model of 

HPRNG and 82% (on average) better than the other 

models. 

Algorithm Chi2 KS Total 

Tests 

MT19937 30.08% 32.14% 10000 

PCG 30.13% 30.24% 10000 

WELL512 28.92% 31.12% 10000 

HPRNG (base) 17.43% 17.02% 10000 

SSRNG (proposed) 05.74% 05.28% 10000 

Table 1 Rejection Rate 

 

Figure 4 Rejection Heatmap 1 across different values of m. For 

each algorithm, rejection placed for KS and Chi-square side by 

side. 

 

Figure 5 Rejection Heatmap 2 
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5.2 Rejection Heat map 

To further illustrate how rejection rates vary with 

different sample sizes, we present the 2 rejection 

heatmaps in Error! Reference source not found. and 

Error! Reference source not found.. Each row 

corresponds to a specific  value (ranging from 102 to 

106), while each column represents a particular 

combination of algorithms and statistical tests (Chi-

square and KS). A cell, shaded in red (=1), indicates that 

the corresponding test rejects the null hypothesis, 

whereas a blue cell (=0) signifies no rejection. 

This heat map reveals some interesting characteristics of 

the models. It is seen that the base model HPRNG, 

rejects the null hypothesis at the lower values of m. 

Sometimes it fails at higher values too but not all of 

them. On the other hand, the other models reject at a 

higher value of m but perform well at lower values. 

Whereas our proposed model remains uniform for 

almost every value of m. So, it is more suitable for 

generating random number sequences over any range of 

numbers as the value of m is the range of the generated 

random numbers.  

5.3 Random Number Distribution 

The Figure 2 compares the distributions of generated 

random values for Mersenne Twister (mt19937), PCG, 

Well512a, HPRNG, and the proposed SSRNG algorithm 

(from left to right) across a range of sample sizes. In each 

subplot, the horizontal axis shows the increasing sample 

sizes of m ( ) and the vertical axis shows the 

range of generated values, normalized to the interval 

: the central line denotes the median of the draws, 

the box boundaries mark the first and third quartiles 

(interquartile range, IQR), and the whiskers extend to the 

minimum and maximum observed values. 

For the Mersenne Twister (mt19937), PCG, and 

Well512a, the medians remain tightly clustered around 

0.5, and the IQR (the height of each box) remains nearly 

constant for the smaller values of m. However, the 

distribution does not remain uniform at higher values of 

m and shows similar drop as the whiskers do not fully 

span the full interval. As for the HPRNG, it shows a 

noticeable skew at lower value of m: the median is 

slightly below 0.5 (roughly around 0.3). For , 

the median drops to 0.2 with a wider IQR box with 

whiskers not extending to 1. But as the value of m 

increased the median shifted towards 0.5 with a more 

uniform distribution. 

On the other hand, the SSRNG shows way better 

distribution. Even at lower values of m, SSRNG’s 

distribution is very close to uniform: its median lies 

almost exactly at 0.5, with an IQR only marginally wider 

than at higher samples. There is essentially no visible 

change throughout every value of m. The spans and 

notch widths are almost identical to the large- behavior 

of the other generators, showing that even small draws 

from SSRNG result in an ideal uniform distribution. 

5.4 Tests Statistics 

The Error! Reference source not found. and 

Error! Reference source not found. respectively 

shows the Kolmogorov–Smirnov (KS) and Chi-squared 

test statistics for the Mersenne Twister (colored blue), 

PCG (colored orange), Well512a (colored green), base 

HPRNG (colored blue) and the proposed SSRNG 

algorithm (colored purple) across various sample sizes 

(m). A smaller statistic in both tests indicates a closer fit 

to the theoretical uniform distribution. 

For the KS statistics, at lower values of m, the base 

algorithm exhibits larger values, suggesting less 

uniformity that gets more uniform as the value of the m 

increases. As for the other models, it increases sharply 

for higher values of m, but it was uniform for lower 

values. The proposed model on the other hand showed 

little deviation throughout. 

 

Figure 2 Generated Number Distribution for base model HPRNG 
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For lower values of m, the base algorithm exhibits 

comparatively higher Chi-squared statistics, suggesting 

less uniformity. As m increases, both (HPRNG and 

SSRNG) algorithms’ test statistics decrease, reflecting 

an overall improvement in distribution uniformity. For 

the other models, they showed similar behavior to KS 

stats. Nevertheless, proposed algorithm consistently 

yields lower or comparable test statistics compared to 

HPRNG and other models, indicating more robust 

performance across the examined sample sizes. 

5.5 Execution Time 

For the proposed model as well as other models, we have 

tested the execution time by running the generators 

multiple times. Here, in Figure 3, we can see how much 

time each model took to generate random number 

sequence over different values of m. The Well512a and 

the Mersenne Twister took the most amount of time. 

PCG took around half the amount. Whereas the Base 

model HPRNG and proposed SSRNG took the least 

amount of time. 

6 OBSERVATION AND DISCUSSION 

The proposed algorithm implements a modified 

multiplicative LCG with bit shift and entropy reseeding. 

This showed great improvement than well-known RNGs 

as well as the base model HPRNG in our rigorous testing. 

Through every parameter, the SSRNG showed great 

results. It has the lowest rejection rate throughout 

different ranges of m and a. When observed in the 

heatmap, we can see that the well-known algorithm 

performed uniformly great at lower values of m but 

constantly failed at higher ranges. The opposite happened 

with the HPRNG as it failed at lower values of m. We can 

see this more clearly when looking at the test statistics 

and the distribution boxplots. At a medium range of m, 

all the models were similarly uniform and performed well.  

As for our proposed model, it was not only uniform 

 

Figure 8 Chi-squared Tests Statistics 

 

Figure 3 Execution Time: Mersenne Twister (colored 

blue), PCG (colored orange), Well512a (colored green), 
base HPRNG (colored blue) and the proposed SSRNG 

algorithm (colored purple) 

 
 

Figure 7 KS Tests Statistics 
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throughout every value of m and showed a huge 

improvement in rejection rate. Along with better 

performance, it was also equally fast and computationally 

cheap.  

7 CONCLUSION 

In this work, we have introduced a novel and 

enhanced Pseudo Random Number Generator – The 

Switch Shift Pseudo Random Number Generator or 

SSRNG – expanding or improving over the Hybrid 

Pseudo Random Number Generator. Our algorithm 

directly addresses two major limitations of the 

conventional PRNGs i.e. their deterministic nature and 

finite‐period behavior. By using an epoch‐based seeding 

mechanism at initialization and a systematic “periodic 

reseeding” model, SSRNG injects fresh entropy into the 

generator at carefully chosen intervals i.e. expected 

worst-case period, effectively “breaking” any potential 

long‐term recurrence and thus solves the issue of 

periodicity. In every iteration, a lightweight bit‐shift and 

multiplicative mixing step prepares a new number 

reduced to a value ranging between 0 to m [0, m) by 

modular operation. This combination of shift-

multiplication-modulus along with periodic switching of 

seed, not only preserves shows high computational 

efficiency but also raises the effective period such that it 

exceeds the requirements of the most demanding 

applications. 

Our extensive empirical tests —spanning 

distributional boxplots, Pearson chi‐square tests, 

Kolmogorov–Smirnov metrics, and end‐to‐end 

execution‐time measurements—show that SSRNG 

surpasses the performance of the classical generators 

(Mersenne Twister, PCG, and Well512a) as well as the 

earlier base model Hybrid PRNG (HPRNG). Our model 

does not fail at lower ranges of m like the HPRNG as well 

as at higher ranges of m like the classical generators. So, 

the uniformity performance is way better than that of 

previous models. On top of that, it is not deterministic, as 

even if we feed a known seed, due to it automatically 

switching the seed during execution based on the current 

time and not on the initial state/seed, it will produce 

different values every time. This gets rid of the 

deterministic nature of the PRNGs and behaves more like 

TRNGs. Along with solving the deterministic nature, the 

periodic reseeding keeps adding entropy regularly, this 

disrupts the periodicity of the sequence. And the result 

can be seen from the test data. 

Beyond statistical quality, SSRNG’s run‐time 

performance is outstanding. Alongside producing better, 

non-deterministic, and non-periodic random number 

sequences, it is still computationally cheap. From the 

execution time graph, we can see that it takes a little more 

time than that of the HPRNG yet solves the two most 

fundamental issues of classical PRNGs. 

In summary, SSRNG shows a significant 

performance boost and advancement as a high‐security, 

high‐performance pseudorandom generator. It is truly a 

Hybrid Random Number Generator as it has properties of 

Both TRNGs (not being deterministic, reproducible, or 

periodic) and PRNGs (being fast, not requiring hardware, 

and computationally cheap). Its ability to produce 

statistically uniform random number sequences 

combined with its great performance throughout a range 

of different parameters, makes it highly suitable for 

applications ranging from cryptographic key generation 

to large‐scale Monte Carlo simulations. At the same time, 

the simple design of the algorithm—merely a few shifts, 

multiplications, and modular arithmetic steps along with 

occasional time‐based reseeding— makes it highly 

portable and easy to implement and integrate across 

various platforms and environments. Future research 

may explore further optimizations, and dynamic 

parameters, investigating adaptive reseeding schedules, 

or formally analyzing the provable lower bounds on 

SSRNG’s cycle length under worst‐case timestamp 

distributions. Nevertheless, even in its present form, 

SSRNG, not only works great with high performance 

with fast execution but also successfully addresses the 

two most fundamental characteristics of classical PRNGs 

i.e. deterministic nature and periodicity without 

sacrificing simplicity and execution time. 
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